In industrial applications, we can now find cameras that capture visible light and non-visible light. This allows for new applications and previously difficult computer vision tasks to be challenged. Let us introduce our new SWIR (Short-Wavelength InfraRed) image sensor that can support these opportunities.

What is SWIR?

Generally, light with a wavelength of 400 nm to 780 nm is called visible light, and light with a wavelength of 780 nm to 10^6 nm is called infra-red light. The wavelength band of SWIR is from 900 nm to 2,500 nm, which is the region of infrared light closest to visible light.

[Photo 1] is a comparison of images taken with visible light and infra-red light of the same subject. In contrast to the visible light image (A) that we are accustomed to, the infra-red image (C), which has a long wavelength, cannot capture the characteristics of a person. On the other hand, although the SWIR image (B) looks like visible light because their wavelengths are close, unique information which is different from the visible light image can be captured under SWIR light.

Image sensors with SenSWIR™ technology are compatible both with the SWIR spectrum and a wide band of 400 nm to 1,700 nm wavelengths, which includes the visible light spectrum. This allows one camera to perform two functions for visible light and SWIR, not only widening the scope of items and purposes of inspection, but also helping to reduce system cost and accelerate image processing to improve throughput. Also, one camera means the captured images in two modes are identical to the pixel level, avoiding image shift.

Summary of application of SWIR technology

- **Visualizing water**
 - Smartphone camera image
 - Under visible light
 - Under SWIR (1,450 nm)

 Water becomes black in an image taken with a camera set at the wavelength of 1,450 nm because water absorbs the light at this wavelength. This attribute can be leveraged for detecting moisture in objects.

- **Inspecting silicon wafer**
 - Smartphone camera image
 - Under visible light
 - Under SWIR (1,550 nm)

 SWIR includes a spectrum that penetrates certain materials, and this has been leveraged in manufacturing, such as a transmission inspection for semiconductors.

- **Transmission observation**
 - Smartphone camera image

- **Inspection of silicon wafer**
 - Smartphone camera image

- **Detection of moisture in the dents on the apple skin**
 - Smartphone camera image
 - Under visible light
 - Under SWIR (1,450 nm)

 Infrared reflectance and absorbance vary at different wavelengths from one material to another. Utilizing this attribute, a specific material can be singled out among other materials, such as plastics, that may look very similar to one another under visible light.

- **Temperature observation**
 - Smartphone camera image

- **Monitoring the temperatures in soldering irons**
 - Smartphone camera image
 - Under visible light
 - Under SWIR (1,550 nm)

 Some image sensors can convert heat into luminosity information. SWIR image sensors are suitable for the observation of heat over 250°C.
Compact size and high resolution realized

The IMX990/IMX991 uses 5μm miniature pixels to achieve both miniaturization and a large number of pixels, achieving high image quality equivalent to SXGA. This feature can increase flexibility for camera positioning and enhance accuracy for inspections, expanding the applications of SWIR sensing.

The IMX992 has a high resolution of approximately 5.32 megapixels, and the IMX993 has a high resolution of approximately 3.21 megapixels with a miniature pixel size of 3.45 μm. This specification is a widely used specification among general global shutter image sensors compatible for C-mount size, and this is the first SWIR image sensor for industrial use to achieve similar specifications. High-resolution imaging allows even tiny objects to be captured clearly, greatly improving the accuracy of various inspections and measurements using SWIR.

Comparison of SWIR images with different resolutions

Devices with higher resolutions can capture objects to be captured clearly, greatly improving the accuracy of various inspections and measurements using SWIR.

Specifications

<table>
<thead>
<tr>
<th>Device structure</th>
<th>IMX990-AABA</th>
<th>IMX991-AABA</th>
<th>IMX992-AABA</th>
<th>IMX993-AABA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodiagnostic coating element included model</td>
<td>IMX990-AABA</td>
<td>IMX991-AABA</td>
<td>IMX992-AABA</td>
<td>IMX993-AABA</td>
</tr>
<tr>
<td>Thermodiagnostic cooling a cement not included model</td>
<td>IMX990-AABA</td>
<td>IMX991-AABA</td>
<td>IMX992-AABA</td>
<td>IMX993-AABA</td>
</tr>
<tr>
<td>Image size</td>
<td>8.2 mm diagonal (Type 1/2)</td>
<td>4.1 mm diagonal (Type 1/4)</td>
<td>11.4 mm diagonal (Type 1/4)</td>
<td>8.9 mm diagonal (Type 1/1.8)</td>
</tr>
<tr>
<td>Effective pixels</td>
<td>1296 (H) × 1032 (V) approx. 1.34 megapixels</td>
<td>656 (H) × 520 (V) approx. 0.34 megapixels</td>
<td>2592 (H) × 2056 (V) approx. 5.32 megapixels</td>
<td>2080 (H) × 1544 (V) approx. 3.21 megapixels</td>
</tr>
<tr>
<td>Unit cell size</td>
<td>5 μm (H) × 5 μm (V)</td>
<td>3.45 μm (H) × 3.45 μm (V)</td>
<td>1296 (H) × 1032 (V) approx. 1.34 megapixels</td>
<td>656 (H) × 520 (V) approx. 0.34 megapixels</td>
</tr>
<tr>
<td>Optical black</td>
<td>Front 0 pixels, rear 96 pixels</td>
<td>Front 96 pixels, rear 0 pixels</td>
<td>Front 20 pixels, rear 0 pixels</td>
<td>Front 24 pixels, rear 0 pixels</td>
</tr>
<tr>
<td>Input drive frequency</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
</tr>
<tr>
<td>Power supply</td>
<td>1.2 V, 1.8 V, 2.2 V, 3.3 V, 1.2 V (Pixel), 2.2 V (Pixel)</td>
<td>1.2 V, 1.8 V, 2.2 V, 3.3 V, 2.2 V (Pixel)</td>
<td>1.2 V, 1.8 V, 2.2 V, 3.3 V, 2.2 V (Pixel)</td>
<td>1.2 V, 1.8 V, 2.2 V, 3.3 V, 2.2 V (Pixel)</td>
</tr>
<tr>
<td>Shutter mode</td>
<td>Global shutter</td>
<td>Global shutter</td>
<td>Global shutter (rolling shutter when DRRS on)</td>
<td>Global shutter (rolling shutter when DRRS on)</td>
</tr>
<tr>
<td>Output interface</td>
<td>SLVS (2 ch/4 ch)</td>
<td>SLVS (2 ch/4 ch/8 ch)</td>
<td>MIPI (2 lane/4 lane)</td>
<td>MIPI (2 lane/4 lane)</td>
</tr>
<tr>
<td>Package</td>
<td>Thermodiagnostic cooling element included:30.0 mm (H) × 30.0 mm (V) Thermodiagnostic cooling element not included:20.0 mm (H) × 16.8 mm (V)</td>
<td>Thermodiagnostic cooling element included:20.0 mm (H) × 16.8 mm (V) Thermodiagnostic cooling element not included:20.0 mm (H) × 16.8 mm (V)</td>
<td>Thermodiagnostic cooling element included:30.0 mm (H) × 30.0 mm (V) Thermodiagnostic cooling element not included:20.0 mm (H) × 16.8 mm (V)</td>
<td>Thermodiagnostic cooling element included:30.0 mm (H) × 30.0 mm (V) Thermodiagnostic cooling element not included:20.0 mm (H) × 16.8 mm (V)</td>
</tr>
</tbody>
</table>

Imaging characteristics

<table>
<thead>
<tr>
<th>Model name</th>
<th>IMX990</th>
<th>IMX991</th>
<th>IMX992</th>
<th>IMX993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>121 mV</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Saturation signal</td>
<td>360 mV</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>>75 %</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>Operability*</td>
<td>>99.5 %</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

*Measurement conditions: Tj = 15 C, all-pixel readout mode.
*1: Operability: percentage of pixels free of defects

Basic drive mode

<table>
<thead>
<tr>
<th>Model name</th>
<th>IMX990</th>
<th>IMX991</th>
<th>IMX992</th>
<th>IMX993</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive mode</td>
<td>All-pixel readout</td>
<td>All-pixel readout</td>
<td>All-pixel readout</td>
<td>All-pixel readout</td>
</tr>
<tr>
<td>Recommended recording pixels</td>
<td>1280 (H) × 1024 (V) approx. 1.31 megapixels</td>
<td>640 (H) × 512 (V) approx. 0.33 megapixels</td>
<td>2560 (H) × 2048 (V) approx. 5.24 megapixels</td>
<td>2048 (H) × 1536 (V) approx. 3.14 megapixels</td>
</tr>
<tr>
<td>Frame rate (max.)</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
<td>37.125 MHz/74.25 MHz/54 MHz</td>
</tr>
</tbody>
</table>

* Tentative values under development.

Achieves low-noise performance regardless of the brightness or darkness of the environment

The high-end model IMX992/IMX993 is equipped with shooting modes that can be selected according to the purpose. By selecting the optimal mode, high-quality images with little noise can be obtained, regardless of the brightness or darkness of the environment. This sensor demonstrates its power in scientific measurement, outdoor observation, and other applications where image quality in low-light environments is important.

High conversion gain (HCG) and low conversion gain (LCG) modes

HCG mode amplifies the signal immediately after light is converted into an electrical signal, at a stage when there is still little noise, thereby reducing noise that occurs afterwards. This allows low-noise images to be obtained even in dark shooting environments, leading to improved recognition accuracy. In bright conditions where dynamic range is important, it is possible to switch to LCG mode.

Dual-read rolling shutter (DRRS) function

Furthermore, these Sony sensors are equipped with a DRRS function that allows shooting with reduced noise. This can obtain images with noise reduced to approximately 1/4.

Digital output-ready for efficient camera design

In general, most SWIR image sensors output analog signals only. This means camera manufacturers need to add a digital conversion circuit on the camera side before developing camera functionality. Sony’s SWIR image sensors incorporate a digital conversion circuit, eliminating the needs for such extra work. This allows camera manufacturers to make a quick start to develop versatile camera functions as they wish more easily and efficiently. Furthermore, the IMX992/IMX993 supports MIPI in addition to SLVS interface, which is common for industrial cameras, increasing flexibility in camera design and component selection.

For more information of Sony’s SWIR image sensors or evaluation data samples, please consult the following URL:

URL for product information webpage about SWIR image sensors:

Sony, “SONY” logo and any other product names, service names or logo marks used in this flyer are registered trademarks or trademarks of Sony Group Corporation or its affiliates. ©2023 Sony Semiconductor Solutions Corporation. All rights reserved.