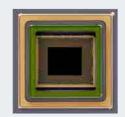
SONY

SWIR图像传感器

IMX990 1/2英寸(对角8.2mm)

约134万有效像素

IMX991 1/4英寸(对角4.1mm)


约34万有效像素

IMX992 1/1.4英寸(对角11.4mm)

约532万有效像素

IMX993 1/1.8英寸(对角8.9mm)

约321万有效像素



产业用相机不仅能拍摄可见光和非可见光,还能凭借信息处理不断创造过去难以实现的全新应用方式。作为其中一例,在此将介绍应用SWIR (Short-Wavelength InfraRed:短波红外线)的图像传感器。

什么是 SWIR?-

一般来说,波长为400nm~780nm的光称为可见光,波长为780nm~10°nm的光称为红外线。SWIR的波段为900nm~2500nm,是红外线中最接近于

[照片1]用可见光和红外线拍摄同一个被摄体所得到的图像进行比较。相较于我们常见的可见光图像(A),波长较长的红外线图像(C)难以捕捉人物特 征。与这两种图像相比,SWIR图像(B)因为光的波长接近于可见光,所以成像效果也接近于可见光,但它仍可捕捉到与可见光图像不同的独特信息。

搭载SenSWIR™技术的图像传感器不仅可以拍摄SWIR波段的光,还能在包含可见光的400nm~1700nm的宽波段中成像。因此,一台相机就能发挥可 见光用途和SWIR用途二种作用,这不仅能扩大检测对象及应用范围,还能削减检测的系统成本,提高图像处理速度,从而提高总处理能力。另外还可 以避免多台相机造成的"画面错位",以像素单位的精度来进行对齐。

SenSWIR是索尼半导体集团所属的一项短波红外线(SWIR)图像传感器技术,它基于化合物半导体材料铟镓砷(InGaAs)合成光电二 极管,并通过铜-铜连接至硅材质的读取电路,可以高灵敏度的捕获从可见光到短波红外线的各种光谱信息。

※SenSWIR 和徽标是索尼集团 (株)的商标。

搭载 SenSWIR 技术的图像传感器的应用切入点

水的可视化

检测苹果瘪痕中的水分的例子

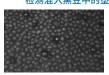
硅晶圆的检测

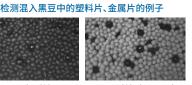

水具有吸收波长 1450nm 左右的光线的性质, 因此使用这一波长进行拍摄, 水将 呈现黑色。利用这一性质,可以检测物质中含有的水分。

穿透观察

用智能手机拍摄

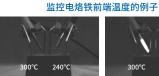
可见光下拍摄




SWIR下拍摄(1550nm)

SWIR 波段的光具有穿透特定物质的性质,因此可在各种制造现场用于半导体的 穿诱观察等用涂。

材料拣选



不同物质对不同波长的光的反射率与吸收率各有不同,利用这一性质,即使是肉 眼看来相同的塑料之类的材料,也能从中拣选出特定的材料。

温度观察

用智能手机拍摄 可见光下拍摄

SWIR下拍摄(1550nm)

图像传感器能够将热量以亮度信息的形式呈现, SWIR 图像传感器可用于 250℃以 上对象物体的观察。

搭载SenSWIR技术的图像传感器的特长

小尺寸、高分辨率的实现

IMX990/991凭借5µm微细像素的采用实现了小尺寸与高分辨率的兼顾, 达成了相当于SXGA的高画质。这不仅增加了相机设置场所的自由度,还 能提升检查精度,从而扩大SWIR传感技术的应用范围。

凭借3.45μm微细像素的采用,IMX992实现了约532万像素,IMX993实现 了约321万像素的高分辨率。这是通用C卡口的全局快门方式图像传感器 普遍采用的规格,而IMX992/993作为产业用SWIR图像传感器,达到了同 等级的规格。高分辨率成像使清晰捕捉细微的拍摄对象成为可能,这将 大幅提升SWIR在各类检查和测量应用中的精度。

不同分辨率的SWIR拍摄图像比较

约134万像素 IMX990

约532万像素 IMX992

Dual Read Rolling Shutter (DRRS)

不易受环境明暗影响、成像噪点少

IMX992/IMX993还搭载了可在拍摄时抑制噪点的DRRS功能。这项功能 可在拍摄时将噪点减少至通常的1/4左右。

高端型号IMX992/IMX993可根据用途选择拍摄模式。选择适当的模式,

能免受环境明暗的影响,拍摄出低噪点的高品质图像。该模式可在科学 测量、室外观察及其他低照度环境但重视画质的应用场景中发挥作用。

High Conversion Gain(HCG)模式与Low Conversion Gain(LCG)模式

HCG模式可在光刚刚转变为电信号后噪点较少的阶段增强信号,从而使 之后产生的噪点相对较少。这样,在昏暗的拍摄环境下也能拍出低噪点

的图像,从而提升识别精度。在重视动态范围的明亮条件下,可切换为

以数字输出实现高功能性

LCG模式。

本产品支持数字信号输出,实现了与现有产业设备用CMOS图像传感器 同等的功能。模拟信号输出的图像传感器需要在相机上另外安装数字信 号转换电路和产业设备所需的功能,而索尼的图像传感器已经搭载了这 些功能,因此,可削减相机开发所需的工时,并让多功能相机的开发工作 变得更加简单。此外,IMX992/IMX993不仅支持产业相机中常见的SLVS 接口,还支持MIPI接口,从而提升了相机设计与零部件选定的灵活性。

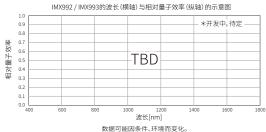
规格

元件构造

型号	(有电子冷却元件)	IMX990-AABA	IMX991-AABA	IMX992-AABA	IMX993-AABA
土力	(无电子冷却元件)	IMX990-AABJ	IMX991-AABJ	IMX992-AABJ	IMX993-AABJ
图像尺寸		对角8.2 mm (1/2英寸)	对角4.1 mm (1/4英寸)	对角11.4 mm (1/1.4英寸)	对角8.9 mm (1/1.8英寸)
有效像	京素	1296 (H) × 1032 (V) 约134万像素	656(H) × 520(V) 约34万像素	2592 (H) × 2056 (V) 约532万像素	2080(H) × 1544(V) 约321万像素
单位像素	尺寸	5 μm (H) × 5 μm (V)		3.45 μm (H) × 3.45 μm (V)	
W 24 BB G7	水平方向	前0像素、后96像素		前96像素、后0像素	
光学黑区	垂直方向	前20像素、后0像素		前24像素、后0像素	
输入驱动频率		37.125 MHz/74.25 MHz/54 MHz		37.125 MHz/74.25 MHz/54 MHz	
电源电压		1.2 V、1.8 V、2.2 V、3.3 V、1.2 V(像素)、2.2 V(像素)		1.2 V、1.8 V、2.2 V、3.3 V、2.2 V(像素)	
快门模式		全局快门		全局快门 (使用DRRS功能时为卷帘快门)	
输出接口		SLVS (2 ch/4 ch)		SLVS (2 ch/4 ch/8 ch) / MIPI (2 lane/4 lane)	
封装		有电子冷却元件: 30.0 mm (H) × 30.0 mm (V) 无电子冷却元件: 20.0 mm (H) × 16.8 mm (V)		有电子冷却元件:30.0 mm(H)×30.0 mm(V) 无电子冷却元件:21.0 mm(H)×20.0 mm(V)	

拍摄特性

型号	IMX990	IMX991	IMX992	IMX993	备注
感光度	121 mV		TBD		F8、1/3030秒曝光
饱和信号量	360 mV		TBD		
量子效率	>75%		TBD		λ=1200 nm
Operability*1	>99	.5%	TE	BD	


^{*}上述特性是在Tj=15°C、全像素读出模式下测定的。 *1:Operability代表无缺陷像素的比例。

基本驱动模式

	<u> </u>	Ũ号	IMX990	IMX991	IMX992	IMX993
	驱动模式		全像素读出		全像素读出	
	推荐记录像素		1280 (H) × 1024 (V) 约131万像素	640 (H) × 512 (V) 约33万像素	2560 (H) × 2048 (V) 约524万像素	2048 (H) × 1536 (V) 约314万像素
		ADC 8 bit	134 frame/s	258 frame/s	130* frame/s	170* frame/s
	帧率 (最大)	ADC 10 bit	125 frame/s	240 frame/s	120* frame/s	150* frame/s
		ADC 12 bit	71 frame/s	137 frame/s	70* frame/s	90* frame/s

^{*} 开发中, 新定

IMX990 / IMX991的波长(横轴)与相对量子效率(纵轴)的示意图

关于SWIR图像传感器的产品信息请点击下方链接。 https://info.sony-semicon.com/cn/swir-prod

关于索尼SWIR图像传感器的详细规格及样品评估的咨询, 请从下方网址或扫描右侧二维码进入。 https://info.sony-semicon.com/en/inquiry-form0001pr

